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COMMENTARY

Reproducibility of prediction models 
in health services research
Lazaros Belbasis1*    and Orestis A. Panagiotou2,3,4    

Abstract 

The field of health services research studies the health care system by examining outcomes relevant to patients and 
clinicians but also health economists and policy makers. Such outcomes often include health care spending, and uti-
lization of care services. Building accurate prediction models using reproducible research practices for health services 
research is important for evidence-based decision making. Several systematic reviews have summarized prediction 
models for outcomes relevant to health services research, but these systematic reviews do not present a thorough 
assessment of reproducibility and research quality of the prediction modelling studies. In the present commentary, 
we discuss how recent advances in prediction modelling in other medical fields can be applied to health services 
research. We also describe the current status of prediction modelling in health services research, and we summarize 
available methodological guidance for the development, update, external validation and systematic appraisal of 
prediction models.
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Introduction
Health services research is a multidisciplinary field 
that studies the health care system, including access to 
and delivery of care; the quality of the care provided to 
patients; the costs of care for patients, health systems, 
and payers; and ultimately the impact of care on health 
outcomes and well-being [1]. Data sources in health ser-
vices research often differ from the traditional epidemio-
logical investigations that prospectively or retrospectively 
collect data through active recruitment of participants 
based on a priori specified research questions [2]. Indeed, 
health services studies heavily rely on data that are rou-
tinely collected for purposes other than research, includ-
ing health care billing claims, registry data, or electronic 
health records [1, 3]. Outcomes frequently examined by 

health services researchers include health care spending, 
and utilization of care services (e.g., hospital admission 
or readmission, admission to intensive care unit, length 
of hospitalization, or emergency department visit).

Making accurate predictions of these outcomes is cru-
cial from the perspective of patients, clinicians, health 
economists, and policy makers. On the basis of predic-
tion horizon, prediction models are classified into two 
categories: (a) diagnostic models (absence of a time 
horizon) and (b) prognostic models (presence of a time 
horizon). During the last decade, there has been an 
intensified discussion about the reproducibility of statis-
tical methods for predicting outcomes in medicine, and 
more recently this discussion has expanded to prediction 
modelling using machine learning techniques [4]. Ensur-
ing reproducible prediction models in health services 
research is critical for the deployment of these models in 
real-world settings to inform clinical and health policy 
decision-making.
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In this commentary, we discuss recent advances in pre-
diction modelling in fields such as clinical medicine that 
are relevant to ensuring reproducible models in health 
services research. While diagnostic modelling is common 
in health services studies (e.g., when developing algo-
rithms for the accurate ascertainment of disease status 
from billing codes in administrative data), we focus here 
on prognostic models that predict a future outcome of 
interest over a time horizon, because these types of ques-
tions frequently concern health services problems. We 
present what is already known about prediction model-
ling in other medical fields, describe the current status 
of prediction modelling in health services research, and 
present recommendations and guidance to improve cur-
rent research practices in this field.

Main text
Reproducibility and transparency in prediction modelling
Reproducibility, transparency, and openness are three 
interconnected concepts that are readily recognized as 
vital features of science [5–7]. Reproducibility is the abil-
ity of independent researchers to obtain the same (or 
similar) results when repeating an experiment or test, 
and it is considered a hallmark of high-quality science [8, 
9]. Irreproducible research can occur because of prac-
tices applied in one or more steps involving study design, 
data quality, statistical analysis or study reporting [8]. Of 
direct relevance to prediction modelling (especially when 
machine learning methods are used) is computational 
reproducibility, which refers to the ability to repeat an 
analysis of a given dataset and obtain sufficiently similar 
results [10, 11]. It requires having available the complete 
analytical environment, including software, properly doc-
umented full source code, and the original data [10]. Ide-
ally, the user and/or researcher should be able to inspect, 
modify and apply the code under modified parameter 
settings to reproduce the results and explore the robust-
ness of the algorithm to the values of its parameters. In 
recent years, platforms designed for the development of 
software, such as GitHub, have been adopted by the sci-
entific community as ways to distribute the code includ-
ing many health services projects [10].

Transparency is another important component of 
high-quality research. Two major transparency meas-
ures are registration and pre-published protocols, which 
can reduce the selective reporting of prediction models. 
Although their importance in the context of randomized 
clinical trials is widely accepted and strongly promoted, 
their importance in prediction modelling research is not 
widely acknowledged [12]. Openness, a term including 
data and code sharing, is also a key indicator of high-
quality research, but it remains an uncommon practice 
in prediction modelling research [12]. Promoting data 

and code sharing is expected to increase the number of 
external validation efforts and individual-participant data 
meta-analyses in prediction modelling for health services 
research. These processes can be enhanced by formal-
izing the data management and data sharing processes 
using the FAIR guiding principles for scientific data man-
agement and stewardship [13]. This document presents 
guidelines to improve the Findability, Accessibility, Inter-
operability, and Reuse of data.

However, it should be acknowledged that data sharing 
in the context of health services research may be chal-
lenging. The main reason is that many routinely collected 
health data are provided to researchers for scientific pur-
poses only upon approval by the entity that generates 
them (e.g., health insurer, health system etc.) under strict 
agreements to protect patient confidentiality and privacy 
[14]. Although these agreements often preclude further 
data sharing among researchers, data sharing could be 
facilitated through the development of large scientific 
consortia which have been successful in other research 
fields such as genetic epidemiology [15, 16].

Experience from prediction modeling in other research 
fields
Several large-scale systematic reviews of prediction 
models in clinical medicine have evaluated the quality 
of clinical prediction models and their potential to yield 
unbiased predictions. A summary of multiple risk-of-bias 
assessments examining more than 2000 models using 
PROBAST (i.e., a risk-of-bias assessment tool) showed 
that (a) two thirds of them have high risk of bias based on 
their statistical analysis, (b) one third of them had high 
risk of bias based on their outcome definition and ascer-
tainment and (c) a quarter of them had high risk of bias 
based on how participants were selected [17]. Moreover, 
one of the largest systematic reviews of prediction models 
examined more than 400 models for outcome prediction 
in patients with chronic obstructive pulmonary disease 
[18]. The vast majority of the examined prediction mod-
els did not report the full model equation or any other 
form of model presentation. This is an important caveat 
of prediction models, because absence of any model pres-
entation renders any effort to assess the reproducibility of 
a prediction model impossible and further diminishes the 
opportunity to deploy prediction models in routine set-
tings, even if they have outstanding performance.

There have also been several assessments of machine 
learning models in areas outside health services research. 
Machine learning is a large family of statistical tech-
niques with a rapidly increasing use in prediction model-
ling, especially in the field of health services research [1, 
19]. Yet many prediction models based on machine learn-
ing methods have important limitations. For example, 
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their adherence to reporting guidelines is often subop-
timal thereby reducing their potential to be reproduced 
and deployed in independent studies [20]. Additionally, 
a risk-of-bias assessment of multiple prediction models 
using supervised machine learning showed that almost 
90% of the models were at high risk of bias [21]. Moreo-
ver, the handling of missing data is rarely reported, and 
when authors deal with missing data, they often poorly 
report the relevant methodological details [22]. These 
issues not only threaten the validity of statistical esti-
mates but also make these models hard to reproduce. 
It is, therefore, important that health services research-
ers recognize these issues in advance and take proactive 
steps to ensure that prediction models addressing health 
services questions are not subject to similar limitations.

Prediction modelling in health services research
Numerous systematic reviews for prediction models have 
been published, and some of them focus on predicting 
outcomes relevant to health services research. For exam-
ple, there are systematic reviews focused on prediction 
models for re-admission after an index hospitalization 
[23, 24], emergency hospital admission [25], length of 
hospital stay [26, 27], length of stay in the intensive care 
unit [28], and health care costs [29]. These systematic 
reviews summarize many prediction models, but their 
focus is on the data sources used, the predictors used and 
the model performance without providing a thorough 
assessment of reproducibility, transparency, and study 
quality.

Moreover, prediction models for outcomes relevant to 
health services research are often included in system-
atic reviews focusing on patients with a specific disease. 
For example, in a systematic review for patients with 
chronic obstructive pulmonary disease, 65 prediction 
models were identified for outcomes relevant to health 
services research (i.e., hospital admission, ICU admis-
sion, readmission after an index hospitalization, length of 
stay, and health care costs) [18]. However, there is a need 
for more systematic assessments of prediction models 
focusing exclusively on outcomes relevant to health ser-
vices research. These systematic reviews could be used 
to draw important observations and recommendations 
to improve the development and validation of predic-
tion models in this field. Of note, systematic reviews of 
prediction models should also adhere to the principles 
of open science to the extent possible. A starting point 
is pre-registration through relevant repositories or even 
journals that publish protocols of systematic reviews. For 
example, we recently published a protocol of a systematic 
review of multivariable models for prediction of health 
care spending using machine learning by following all the 
relevant frameworks and methodological guidance [30]. 

We hope that this research practice can become more 
prevalent in the near future.

Existing guidance for prediction models
A critical step in improving the reproducibility and 
research quality in prediction modelling for health ser-
vices research is to systematically map the current 
research practices in this field. Through this process the 
issues contributing to irreproducibility and poor report-
ing of prediction models will be identified. However, to 
our knowledge, existing systematic reviews on prediction 
models for outcomes relevant to health services research 
have not performed a thorough assessment of prediction 
models.

Various frameworks are available for performing sys-
tematic reviews for prediction models, and we recom-
mend that researchers follow them when conducting 
systematic reviews [31]. Also, the PRISMA statement is 
a general framework that was developed to guide any sys-
tematic review and meta-analysis in biomedical literature 
[32, 33]. To support the conduct of systematic reviews of 
prediction models, there is a validated search algorithm 
for prediction modelling studies in PubMed [34], and a 
guidance on how to construct a data extraction form [35]. 
Both these items can make the systematic review process 
more efficient, reproducible, and transparent. In addition, 
PROBAST, a risk-of-bias assessment tool for prediction 
modelling studies, can help contextualize biases arising 
from the selection of participants, the ascertainment of 
the outcome, the handling of predictors, and the statisti-
cal methods used for prediction [36, 37]. An extension of 
this tool (PROBAST-AI) for the assessment of prediction 
modelling studies using machine learning approaches is 
currently under development [38].

Researchers should also consider the life cycle of 
prediction modelling research, as it was previously 
described, before developing a new prediction model 
[39–42]. Based on the PROGRESS framework [39], the 
researchers should avoid developing new prediction 
models from scratch without ensuring that existing mod-
els are inadequate. Instead, when prediction models exist, 
they should aim to update them to improve their predic-
tive performance and externally validate them to exam-
ine their generalizability in other populations. Moreover, 
before the deployment of prediction models in clinical 
practice or their use in decision-making, impact studies 
should be designed to assess their impact in real world 
settings [42].

The development, update and external validation of 
prediction models in health services research could be 
improved by following guidance that was developed dur-
ing the last decade for clinical prediction models. Health 
services researchers building a prediction model should 
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follow the TRIPOD statement, which is a set of recom-
mendations for the reporting of studies developing, vali-
dating or updating a prediction model and is endorsed 
by many journals [43, 44]. Although the TRIPOD state-
ment was developed for traditional (parametric) statisti-
cal models, there is an ongoing process of developing the 
TRIPOD-AI statement, which will provide recommenda-
tions exclusively for machine learning models [38]. Also, 
there is additional guidance explaining how the predic-
tion models should be presented [45].

Some additional guidance has been developed for pre-
diction models using machine learning approaches. The 
MI-CLAIM checklist was developed to improve trans-
parent reporting of machine learning algorithms in 
medicine, and it has similarities with TRIPOD statement 
[46]. Also, there is an additional framework on transpar-
ency, reproducibility, ethics, and effectiveness in machine 
learning applications for health [47]. Some standards for 
the computational reproducibility of machine learning 
models have been proposed, based on data, model and 
code publication, programming best practices and work-
flow automation [48, 49].

Outlook
Adhering to reproducible and transparent research prac-
tices when developing and employing a prediction model 
in health services research is important for the design of 
efficient health systems and health delivery programs, 
and the improvement in patients’ outcomes. In this 
commentary, we summarize available frameworks and 
guidelines to develop, externally validate, update, and 
systematically review prediction models, and we discuss 
potential implications in health services research. These 
frameworks and approaches to reproducible predic-
tion modelling that we discuss here require involvement 
from multiple stakeholders beyond individual research-
ers. Such stakeholders involve journal editors, peer-
reviewers, funding bodies and universities, who can play 
a critical role in promoting, incentivizing and rewarding 
reproducible and transparent research practices.
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